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Ray statistics beyond a fractal diffuser-an exactly 
soluble model 
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Received 6 March 1987 

Abstract. A Brownian fractal random walk model for the gradient of rays scattered by 
random media is investigated. It is shown that when the emanating rays lie on a regular 
grid with slope given by the map m, = rn . . ,  + E , , ,  with E ,  = i l ,  then their statistics and 
correlation properties may be determined exactly at all points where they intersect. The 
correlation length is shown to increase quadratically at large distances where the continuum 
limit (ray density) is discussed. The theory compares well with numerical simulations. 

1. Introduction 

Naturally occurring phenomena which show a random structure that appears similar 
over many length scales have been known and studied for many years, the most well 
known example being Brownian motion (see, e.g., Wax 1954). There has been a 
renewed interest in this subject in recent years following the work of Mandebrot (1982) 
who has emphasised the wide applicability of multiscale descriptions and has coined 
the generic word fractal to describe such objects which may be classified according to 
their fractal dimension. 

An application area of considerable interest is that of waves which have encountered 
fractals, referred to as difractals by Berry (1979) who also pointed out that no 
geometrical optics limit exists for such objects since their wavefronts are not differenti- 
able. As a consequence of this, intensity fluctuations are very weak even though the 
scattering may be strong in the sense that the fractal scatterer may induce phase 
fluctuations which are many wavelengths. In contrast, wavefronts which are differenti- 
able will give rise to focusing in the short-wave limit and hence very large intensity 
fluctuations, which may be analysed using catastrophe theory (see, e.g., Berry 1978). 
Jakeman (1982a) has argued that wavefronts which are once-differentiable, i.e. have 
gradients which are fractal, will possess a geometrical optics limit but, in the absence 
of higher-order derivatives, will not give rise to focusing. However, the intensity 
fluctuations can be large and take all values between those of a marginal diffractal 
(fractal slope dimension D + 2 )  and a ‘smooth’ wavefront ( D +  1) (Jakeman and 
Jefferson 1984). Some discussion of scattered waves with these properties has been 
alluded to in the past, though without the benefit of a fractal description and interpreta- 
tion (Rumsey 1975, R h o  1979). 

Since wavefronts with fractal slopes give rise to intensity fluctuations covering a 
very wide range they represent an important classification of scatterers worthy of 
further study. In particular, we would like to determine the statistical and correlation 
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properties of the scattered waves. Unfortunately this poses severe mathematical difficul- 
ties and even a determination of the second moment of intensity (contrast) has proved 
a laborious task. Indeed these difficulties are not confined to multiscale models and  
one usually has to resort to numerical methods or simulations. One exception is the 
case of the Brownian fractal-slope model ( D  = 1.5) which Jakeman (1982b) has solved 
exactly. It is the existence of this exact solution which motivated the present work. 
The intention was to simulate a Brownian fractal-slope wavefront on a computer and  
investigate the statistics and  correlation properties of the emanating rays in the 
geometrical optics limit, comparing the results with the known analytic solution. We 
could then investigate the effects of finite size (inner and  outer scale) and subsequently, 
with some confidence, apply the same computational techniques to other ‘non- 
Brownian’ fractal-slope wavefronts for which the statistics are not known. 

When simulations were performed and the results compared with the analytic 
expressions the agreement was poor but improved with distance. These discrepancies 
led to a theoretical study of the ‘discretised’ model in its own right which was found 
to have some interesting mathematical properties and which also yielded exact solutions 
which compared very well with the simulations. The results of this ivestigation will 
be presented in the following sections. In § 2 the model is defined and in 0 3 the ray 
statistics are determined at all points where the rays can intersect. Section 4 deals with 
the correlation properties which are shown to have an  exponential decay in a certain 
limit and this enables the first-order ray-density statistics to be deduced in the continuum 
limit. These results are discussed in the final section where comparison with Monte 
Carlo simulations is made. 

2. The model 

Consider a plane wave which is passed through a narrow region of turbulence or 
reflected from a rough surface. If the scattering region is very narrow then, to a good 
approximation, only the phase of the wave will change as it traverses the scattering 
region. In the geometrical optics limit, the emanating waves may be described entirely 
by the random function m(x, y ) ,  the gradient of the rays in the xy plane at z = 0. For 
mathematical simplicity, it will be assumed that the wavefronts are corrugated, i.e. 
m(x, y )  is constant for the lines x = constant. The wavefronts are thus determined by 
the scalar random function m(x) .  It is further assumed that m ( x )  is a Brownian fractal 
which satisfies the stochastic differential (Langevin) equation 

where E ( X )  is a 6-correlated random process, i.e. 

(E(X)E(X’))= 6(x-x‘ ) .  (2) 

With m and x replaced with velocity and time, equation (1) becomes the stochastic 
differential equation for ordinary Brownian motion in a ‘frictionless’ medium, the 
so-called Wiener process. 

Some care is needed in the interpretation of (1) as a differential equation since, 
strictly speaking, m ( x )  is not differentiable, though continuous. This point has received 
considerable attention in the literature and has been rigorously justified (see, e.g., Wax 
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1954). The formal solution to ( 1 )  is 

m(x )  =p E(x’) dx’  51, 
from which we easily deduce, using (2), 

(m(x)’) = ~3 

D ( x )  = ( [m(x+x’ )  - m ( x ’ ) 1 2 )  = Ix I / /  
and 

(3 )  

(4) 

( 5 )  

where the angular brackets denote the ensemble average. Equation ( 5 )  merely states 
that the variance of increments in m is linear and independent of position, i.e. 
‘stationary’, whilst equations (3 )  and (4) show that m ( x )  is a Gaussian process with 
infinite variance irrespective of the statistics of E(x),  provided they are stationary (by 
the central-limit theorem). It is also clear that m(x)  is a Markov process with 

P(m(x , ) ,  m(x2), m(x,), . . .) 
= p(m(x l ) )p (m(x l ) l  m(x2))P(m(x*)Im(x3)) . . . 

m(x,+ , ) -  m(x,). 

x, < x* < x, . . . ( 6 )  
where the conditional probabilities P (m(x , )  1 m(x ,+ , ) )  depend only on the increments 

To discretise the process m(x)  we generate a sequence of random numbers 
m,, m , ,  m 2 , .  . ., on a uniform grid xo, x , ,  x 2 , .  . ., where x, = n A .  The m, satisfy the 
recursion relation 

m, = r n n - l + ( A / l ) ’ / 2 ~ ,  ( 7 )  
with 

(cf equations (1)-(3)). It is easily verified that m, satisfies equation (5 )  with x = x, = n A  
and x ’ = x , . .  

As pointed out by Mandelbrot (1982), m(x) ,  like all fractals, satisfies an affine 
scaling law, i.e. remains statistically indistinguishable under the transformation x + kx, 
m + k’/’m.  This is shown in figure 1 where we successively shrink the z axis linearly 
and the x axis quadratically resulting in a RMS fluctuation in the ray gradient which 
is similar in all diagrams. It should be noted, however, that at certain distances 
(particularly at odd-integral z in figure l ( a ) )  the rays focus at points on a regular grid, 
though this ‘fringing’ disappears when viewed on a coarser scale (figure l ( d ) ) .  To 
some extent this focusing effect is a consequence of the fact that we have chosen the 
rays to originate from a uniform grid A =  1 with ei = *l. However, it is truly an  
inner-scale (discretisation) effect which is inescapable, for even if A were randomised 
and had some other statistics (but chosen so that equation (5 )  was still satisfied) 
there would still be ‘fuzzy’ focusing. 

In the next section it will be shown that for the choice E ,  = *1 the focusing of rays 
at regular points may be exploited to yield exact solutions for the statistics and 
correlation properties of the converging rays. We conclude this section by remarking 
that the Gaussian-Markov process m ( x )  may be defined rigorously as the limit A + 0 
of the well defined Markov chain defined by equations (7)-(9).  
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lbl 

I d )  

Figure 1. Ray diagrams under affine scaling transformations. Broken lines denote the 
boundary of the previous diagram. 

3. Ray statistics 

Choosing x in units of A and m in units of 

m, = m,-' + E, .  

equation (7)  becomes 

(10) 

The equation of a ray from a point i at z = 0 to a point x, at z is 

x , = i + z m ,  (11) 

and hence the separation of rays i and j is 

xI - x, = j - i + z (  m, - m, ). (12) 

With the choice E ,  = f 1, m, is an  integer and hence for integer z, x, - x, is also integral, 
i.e. all rays intersecting the line z =integer lie on a regular lattice with unit spacing. 
Further, when z is an odd  integer x, - x, is either 2 or 0 (rays intersect) since m, - m, 
is even when j - i is even and  odd when j - i is odd. Hence, all rays intersecting the 
line z = o d d  integer lie on a regular lattice with spacing 2 .  These regular focusing 
points may be seen clearly in figure l ( a ) .  

Let n be the number of rays intersecting at a lattice point with z integral. The 
probability P, that n rays will intersect may be determined indirectly by first deriving 
expressions for the factorial moments 

K ~ ( z )  = ( n ( n  - l ) ( n  - 2 ) .  . . ( n  - p + l ) ) .  (13) 



Ray statistics beyond a fractal difluser 4845 

Since all lattice points are spatially equivalent in the statistical sense let us choose 
lattice points on the line x = 0 for convenience'i. It also follows from spatial equivalence 
that 

( n ) =  1 

as is the case at z = 0 where P,, = trivially. 
In the appendix it is shown that 

where P( m,, , m,>, . . . , mtp)  is the joint probability that the gradients at  sites i, , i 2 ,  . . . , ip  
will be m,,,  m,2, .  . . , m,, and the prime on the summation means that all the i , ,  . . . , ip  
must be different. Now P is symmetric in its arguments and hence 

K p ( Z )  = p !  1 P ( m i l = j , m n = i  I 12 , . . . ,  
r I  < i 2 . .  . < i, 

Using the Markovian property (6) together with the normalisation condition 
X 

~ ( m ,  = i / z )  = 1 
I = - W  

and the fact that the conditional probability 

P(m,  = i / z / m J  = j / z )  

depends only on m, - mJ = ( i  - j ) / z ,  equation (15) becomes, after replacing sums over 
iz, i,, . . . , ip  by sums over i2 - i l ,  i3 - i2, . . . , i P  - i p - l ,  

. .  

Equation (9) tells us that mJ+k - mJ = E ] + ,  + 
E = *1 and hence k / z  must be integral in (16). It follows that 

. .+ E J f k  must be integral since the 

P(m,+,-m,= k / z ) = 6 ,  I L P ( m J + k - m J = l )  (17) 
with I integral. The probability that r of the E are 1 and s are -1 is just the binomial 
factor r+SCr/2r+S and since 

r +  s = k = zl 

r - s = k / z  = 1 

then solving for r and s in terms of z and 1 and substituting in (17) gives 

Note that r = I (  1 + z ) / 2  must be integral and  hence 1 can take all positive integer values 
for z an  odd integer but only even integers for z an even integer. Hence, substituting 
(18 )  into (17 )  and summing over k gives the exact result 

t When z is an odd integer only alternate lattice points of unit spacing are equivalent for one particular 
realisation. However, ensemble averaging ensures that site equivalence is regained. 



4846 J H Jeferson 

where 

for z an odd integer and  

for z an even integer and  m = 112. 

probability distribution 
Inverting equation (19) (using the characteristic function (( 1 + e ) " ) )  gives the 

where Po( z)  = a/ 1 + a. 
The distribution is particularly simple at z = 1 since 

r 

a ( l ) =  1 2 - ' = 1  
/ =  1 

and hence 

K p ( l ) = P !  (22) 

giving 

P,(1) = (f)"". 

This result can, in fact, be deduced directly as follows. Equation (12) tells us that 
the first focusing region is at z = 1 and this is seen clearly in figure l ( a ) .  Suppose a 
ray passes through a lattice point at z = 1. The probability that an  adjacent ray will 
also pass through this point is f since it will either d o  so or intersect at  the next lattice 
point with equal probability. Similarly, the probability that the n 3 1 consecutive rays 
will pass through the same lattice point and the ( n  + 1)th ray will not is (f)"". But 
this is the required probability, for once the chain of converging rays is broken no 
further rays can ever converge onto this same lattice point (see figure l ( a ) ) .  Thus the 
number of rays at different lattice sites are independent (simply because the increments 
of the Brownian walk are independent), i.e. they are 6 correlated (see also the next 
section). This shows, in a very simple way, how the highly correlated Gauss-Markov 
process m, is transformed into the 6-correlated process n, with non-Gaussian statistics. 

A further simplification arises at large distances since Stirling's formula 
2 m z  C m (  1 +:I 

2 2 m z  - ( ~ m z ) - " *  exp(-m/z) 
z-iT 

may be used in (20) to give (replacing the sum by an  integral) 

CY ( z  = odd integer) - 2 
2-c€ 

and 

CY ( z = even integer) - 1 
L'iT 
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which are, in fact, upper bounds. Hence the factorial moments are 

K ~ (  z = odd integer) - 2p-'p ! 
2 - 5  

K,,(z =even integer) - p !  
z - a  

giving the probability distributions 

with Po + 3 I 2 n + l  pn>o + z(3) 

P" - ( + ) " + I  

for I - 0 3  an odd integer and 

for 2-03 an even integer. Note that (266) is the same distribution as Pn(l) though 
for quite different reasons. 

The foregoing analysis will now be generalised to all points in the xz plane where 
rays can cross. From equation (12) it follows that since j - i and m, - m, must be 
integers then rays will cross (x ,  - x, = 0) for values of z which are rational fractions 
a l .  Furthermore, given any real z > 1 ,  we can always choose a rational fraction which 
is arbitrarily close to z. Let us consider a general point, z = u / u ,  where U and u are 
integers with U 2 u (the case U = u = 1 has already been considered). From equation (12) 

x , - x , = [ ( j - i ) u + u ( m , - m , ) ] / u  (27 )  
from which it follows that the rays at z = u / u  lie on a lattice with lattice parameter 
2/u if U and U are both odd and l / u  otherwise. In particular, the lattice parameter is 
one when z is an even integer and two when z is an odd integer, as shown earlier. 

The factorial moments and probabilities are again given by equations (19) and (21) 
with (cf equation (20)) 

for U + u even (i.e. U and U both odd) and 
2um 

CW"+', a ( z = u / u ) =  1 
m = ,  22un' 

for U + U odd. When U is large Stirling's formula may again be applied through z need 
not now be necessarily large (e.g. z = ( U  + 1)/  U with u + CO).  Thus 

for u + u  even and 

for u + u  odd. 
Note that 

and 



4848 J H Jefferson 

(see equation 21 ). This is clearly indicated in figure 1 ( a )  where two or more rays never 
converge for z close to an integer (and hence U large). It is a consequence of the fact 
that converged rays can only originate from points separated by a distance U at z = 0 
(see equation (12)) and this is negligible for sufficiently large U. 

Equations (19), (21) and (28) constitute an exact solution for the first-order statistics 
at z a  1. 

4. Correlation function 

Let us again, for convenience and clarity, restrict z to integral values. Denoting n(x, z )  
as the (random) number of rays at point (x, z) then it follows from the appendix that 
the correlation function may be written 

C ( x ,  2 )  = (n(x', z)n(x+x', z ) )  

k-x' k'- (X + x') =E, P (  mk =y' . m k . =  
k k  Z 

= I=-x $ P ( m i - , - m k = i - x )  Z 

where 1 = k' - k and X k  P (  mk = ( k  - x ' ) / z )  = 1 has been used. 
Note that not all values of 1 =integer will contribute to the sum in (30) since the 

corresponding probability is zero unless m k + ,  - mk is an integer. Setting ( I  - x)/z = p ,  
an  integer, and summing over p gives 

ensuring that p and 1 = x+pz are integral for x integral (otherwise C ( x ,  z )  = O ) .  
However, not all values of negative p are allowed for certain x, e.g. when there is a 
solution p = -x/z. 

The precluded p values may be determined as follows. Let r be the number of 1 
and s the number of - 1  in the random walk from k + k' = k + x +pz. Then 

r + s = / x + p z I  r - s = p  

that is, 

r = $( Ix + p z  I + p )  s = f ( ( x + p z I  - p ) .  

But r 2 O  and s *O, hence 

1 x + p z  12 - p  (320) 

and 

I x + p z  I 2 p .  (32b) 

For p a 0  both these equations are satisfied for all x and 2 2 1 .  For p < O  (326) is 
always satisfied but not (320) which has precluded values in the range 

X X 
-- < p < - -  

2 - 1  Z+l' (33) 
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Hence, substituting the binomial probabilities ri-rC,/2’Ts into equation (31) gives finally 

p = - w  

where the prime on the summation means all p satisfying (33) are precluded:. 
For the case z = 1 it has already been argued in the last section that the number 

of rays at  different sites are 6 correlated. This may be demonstrated explicitly from 
equation (34) which becomes 

for x an  even integer and  0 otherwise. Now n(i, 11, with i integral, is always zero for 
alternate sites since rays lie on a grid with spacing 2. Hence 

0 + 2  
2 

(n(i, 1))=-= 1 

and 

0 + 4  
2 

( n ( i ,  l ) ) (n( i+ j ,  1))=-=2 

for j even and 0 otherwise, which is the same as C ( j ,  1) from equation (35). The rays 
at different sites are thus 6 correlated. 

The expression (34) can again be simplified when z >> 1 when the precluded p values 
make a negligible contribution. 

Applying Stirling’s formula and replacing the sum by an  integral gives 

= 2[ 1 + exp( -2x/z2)] (36) 

where x is an  even integer and z an odd integer. In a similar way it is straightforward 
to show that 

C(X, z )  - 2 - 0 3  1 +exp(-2x/z2) (37) 

when z is an  even integer and  x may be even or odd. Hence, for x<< z, the rays are 
approximately fully correlated in the sense that (cf equations (25)) 

(38) (n(x’, z )n (x+x’ ,  2 ) )  - z-m (n(n - 1)). 
X / Z 2 + 0  

T For z an odd integer, p takes on all integer values apart from the precluded region (33).  However, for z 
even, only even p are allowed when x is even and only odd p are allowed when x is odd (see equation 
(34)). For what follows z is taken to be odd though the results are easily extended to even z. 
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Using this fact it is straightforward to deduce the probability distribution for the ray 
density in the continuum limit as follows. The mean ray density over a distance k 
(integral) with z an  even integer is 

l k  Rk =i 1 n ( i ,  z ) .  
, = I  

The pth moment is 
h 

( R e ) = k - P  1 ( n , , n , 2 . . . n t p ) .  
11.1’. . i p = l  

Now for k<< z 2  the rays are approximately fully correlated and 

( n , , n C 2 .  . . nip) = ( n ( n  - 1) . . . ( n  - p  + 1)) 

= p !  ( i , # i , #  . . .  # i p )  

from equation (25). Hence 

(RE) - p!k-P  $ l = p !  
k.z-m 1 1 , 1 2 .  .... l p =  I 
k ;  z’-0 

and in this limit 

P ( R )  = exp(-R) 

a result obtained by Jakeman (1982b) directly for the continuum limit. 

(39) 

5. Summary and discussion 

A discrete random walk model (equation (9)) for the gradient of rays scattered by 
random media has been solved exactly. The probability of n rays crossing at a point 
(equation (21)) was determined fiom expressions for the factorial moments (equation 
(19)). The results are particularly simple, and obvious, at z = 1 where the number of 
rays crossing at different ‘sites’ are uncorrelated. The results also simplify at large 
distances where Stirling’s formula may be applied. This may be regarded as a con- 
sequence of the central limit theorem since m,+k - m, will be approximately Gaussian 
when k is large, which it must be in equation (17) when z is large, i.e. rays crossing 
at a point at z can originate only from points separated by at least z. The correlation 
length was shown to increase from zero at z = 1 ( 6  correlated) to -z’ for z large, 
where the decay of the correlation function is exponential. Thus, for x’<< zz rays become 
fully correlated and this fact was used to show that the ray density has an  exponential 
probability distribution at large 2. 

The convergence to the continuum limit is quite slow as shown in figure 2 where 
P I , ,  is plotted against z (an  odd integer). To test the theory, Monte Carlo simulations 
with 100 000 rays were performed and results from these are also plotted in figure 2 
with similar plots for the first six factorial moments in figure 3. 

Although the agreement is good it should be pointed out that, in order to extract 
reasonably accurate asymptotic statistics from the simulations necessitated the gener- 
ation of very large data sets. This is a n  unavoidable consequence of the multiscale 
nature of fractals and the requirement that many points need to contribute to the ray 
density in order that the effects of a finite step length (inner scale) become masked. 
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Figure 2. Probability distribution P , , ,  plotted against z. The full curve is the theoretical 
result and the points are Monte Carlo simulation results for 100 runs of 100000 rays. 

The results obtained here should be helpful for simulations of non-Brownian fractals 
where knowledge of the asymptotic ray density statistics is incomplete. 
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Appendix 

Let n = n ( x ,  z )  be the number of rays at the point x, z, that is, 
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Figure 3. The first six factorial moments K , - ~  plotted against z. The full curve is the 
theoretical result, the broken line is the asymptotic value and the points are Monte Carlo 
simulation results for 100 runs of 100000 rays. 

But &m,: (x , -x ) , z (Sm, : (x , -x ) / z - l )  = O  no matter what the value of m i .  Hence 

n ( n  - 1) = C &m,:(x, -x j ,zSm,:(x, -x) /z .  
iJ 
IfJ 

Similarly, it is straightforward to show that 
n(n - l ) ( n  - 2 )  . . . = C 

r f j f k  

S m , : ( x , - . ~ j / z & m , : ( x , - x j / ~ & m ~ : ( x ~ - x ) / z  . . . 
1,Lk 

Averaging over the joint distribution P(m,,  m,, mk, . . .) gives 

t t ; # k  

In a similar way, all correlation functions may be expressed in terms of P. 
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